
 

 

 
Abstract— This paper presents a new method for solving the 

magnetic forces/torques of a multi-DOF spherical actuator that 
has more controlling inputs than its mechanical DOF.  Unlike 
methods that based on the Lorentz force equation or the 
Maxwell stress tensor, which require computing the volume or 
surface integrals to derive the forces, the dipole force method 
presented here offers the magnetic force solution in closed form. 
We validate the dipole force model against published 
experimental data, and demonstrate its application in solving 
the inverse torque model of a multi-DOF spherical motor, which 
computes the required set of maximum current inputs for a 
given design specifications.  

 
Index Terms— actuators, force/torque model, spherical 

motor, wrist actuator    

I. INTRODUCTION 
Design and real-time control of a multi-DOF 

electromagnetic actuator requires solving the inverse torque 
model which determines a set of input currents to the 
electromagnets (EMs) for a specified magnetic forces/torques. 
Two common methods used in calculating the magnetic 
forces in a magnetic field are the Lorentz force equation and 
the Maxwell stress tensor. Both these methods require 
solving the magnetic field and computing the volume or 
surface integrals to derive the forces. 

Existing techniques for analyzing electromagnetic fields 
and for designing and real-time control of a multi-DOF 
actuator utilizing permanent magnets (PMs) rely primarily on 
three approaches; namely, analytical solutions to Laplace 
equation, numerical methods and lumped-parameter analyses 
with some form of magnetic equivalent circuits [1]. The 
possibility of obtaining an analytical solution is often remote 
for devices with complex geometry. Perturbation theory and 
linear superposition can sometimes render a difficult problem 
solvable. However, even if an analytical solution is 
achievable, it often results in a series of space harmonics of 
non-elementary functions [2] [3] which have to be computed 
if a numeric solution to the problem is desired. Numerical 
methods (such as finite element method) offer a good 
prediction of the magnetic field for accurate computation of 
the magnetic torque [4] [5]. However, demanding 
computational time limits these numerical methods to off-line 
computation. In order to obtain closed-form solutions for 
design optimization and motion control of electromagnetic 
actuators, real-time computations have largely relied on 
lumped parameter approaches which generally yield only 
first-order accuracy. These approaches have difficulties in 

achieving both accuracy and low computation time 
simultaneously. More recently, the interest to optimize the 
spherical motor design has led us to develop alternative 
techniques for analyzing electromagnetic fields of a 
multi-DOF actuator. This effort led to the distributed 
multi-pole (DMP) method [8] for computing the magnetic 
field of a permanent magnet (PM), upon which the effects of 
key design parameters on the torque performance of a SWM 
[7] were investigated. To reduce the volume integral for 
computing the Lorentz force to a surface integral, an 
equivalent single layer (ESL) model that approximates the 
magnetic field of a multi-layer (ML) coil was proposed in [8]. 
While the ESL model provides a relatively time-efficient 
approach to obtain the magnetic force on a thin coil, the 
modeling error however increases with coil thickness, 
particularly within the core. For compact spherical motors 
where thick EM coils are important for high 
torque-to-volume ratio design, a more accurate yet efficient 
solution for predicting the magnetic field and force of an EM 
is desired.   

An alternative method is to compute the magnetic force in 
analogy to that on an electric charge by the Lorentz law.  As 
shown in Fig. 1, we define a magnetic dipole (with charge 
strength m) as a pair of source and sink separated by a finite 
distance. The force F and torque T acting on the dipole can be 
written (in analogy to that on a stationary electric charge by 
the Lorentz law) as 

[ ]o R Rmμ + −= −F H H  (1a)

[ ]o R Rmμ + + − −= × − ×T R H R H  (1b)
where μ0 is free space permeability; HR+ and HR− are the 
magnetic field intensities acting on the magnetic source and 
sink of the dipole respectively; and the subscripts R+ and R− 
are the corresponding distances from a field point. Equation 
(1) suggests a closed form for computing magnetic forces of 
an actuator if both PMs and EMs and their magnetic 
boundaries can be modeled as dipoles. 
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Fig. 1 Force on a dipole in the magnetic field 
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The remainder of this paper offers the following:  
• We offer a method to derive an equivalent permanent 

magnet (ePM) such that the magnetic field of a multilayer 
EM can be characterized by a distributed set of multi-poles 
(DMP) model; the procedure to derive the DMP for a PM 
can be found in [8].   With all the magnetic fields of the 
PMs and EMs in a system are modeled as DMP, the 
magnetic forces on the system can be calculated using the 
Maxwell stress tensor method or the dipole force model (1). 

• The DMP model derived for a cylindrical ML coil has been 
validated by comparing the computed magnetic fields 
against exact solutions computed from the original ML coil 
for a range of aspect ratios.  In addition, we compare the 
magnetic force computed using the dipole force equation (1) 
against results of the Lorentz force equation and the 
Maxwell stress tensor method, and validate the 
comparisons against published experimental data.  Unlike 
the Lorentz force equation and the Maxwell stress tensor 
method, both of which require computationally tedious 
volume and surface integrations respectively, the 
closed-form dipole force equation (replacing integrations 
with summations) dramatically reduces computation time. 

• Along with the CAD design, we illustrate the application of 
the ePM and dipole force model for simulating the 
maximum current inputs required for a given design. 

II. DMP MODEL OF A MULTILAYER EM 
To model a multilayer EM as an equivalent permanent 

magnet (ePM), the process involves finding an equivalent 
magnetization M in terms of the current density J and coil 
geometry, which specifies the voice coil.  Once the ePM is 
found, a distributed set of magnetic dipoles that characterizes 
the magnetic field of the EM can be derived using the 
distributed multi-pole (DMP) modeling procedure [8].   

The magnetic flux density created at ( ,  , ) x y z′ ′ ′ ′R due to the 
current-carrying EM to the field point R(x, y z) is given by the 
Biot-Savart law [9]: 

0
3

( )
4 | |EM

V

dVμ
π

× −
=

−∫
J R' RB

R' R
 (2)

For a PM, the magnetic flux density can be calculated from 
the negative gradient of the analytical magnetic potential [9]:  

0 0
3 3

( )( ) ( )( )
4 | | 4 | |PM

V S

dV dSμ μ
π π

− ∇ • − • −
= +

− −∫ ∫
M R' R M n R' RB

R' R R' R (3)

Unlike (2), the calculation of BPM does not need the cross 
product of J and R - R'  vectors. Equations (2) and (3) 
provide the basis for deriving an ePM for the multilayer EM.  
The interest here is to seek the field solution outside the 
physical region of the electromagnet, particularly near its 
boundary along the magnetization axis. The procedure is best 
illustrated through an example.  

Cylindrical EM 
Cylindrical PMs and EMs are commonly used. Some 

analytical and experimental results are also available for 
model validation. They are used here for clarity to illustrate 

the DMP modeling procedure.  Figures 2(a) and (b) show the 
geometry of a cylindrical EM and its corresponding ePM. The 
current density of the EM is given by (4): 

( ) 0,    0
( )    where 

( ) ,   
i

i o

J r r a
J r

J r J a r a
= ≤ <⎧

= ⎨ = ≤ ≤⎩
θJ e

 
(4)

and ai and ao are the inner and outer coil radii. 

  
(a) multilayer EM (b) ePM 

Fig. 2 Multilayer EM and Equivalent PM 
From (2), the z-component of the EM flux density can be 

calculated, which yield  
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where ( )', , ' ( '/ , / , 2 '/ )o oX Y Z x a y a z l′ ′= ; and / (2 )oL l a= . The 
effect of the aspect ratios, ai/ao and l/(2ao), on the EM flux 
density is graphed in Figs. 3(a)-(c), where the z component 
BEMz at ε/l=0.01 is normalized to 0 / 2Jlμ  and plotted along 
the radial direction.   

As shown in Fig. 3, BEMz is relatively uniform inside the air 
core, and linearly decreases along the radial direction. The 
maximum  BEMz occurs at X’=Y’=0 : 

0

(0,0, / 2 ) ( )( )ln ln
/ 2 ( )( )

EMz o o o o i i

i i i i o o

B l a R a R a R
Jl a R l a R a R

ε ε
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(6)

where ε is any positive number; 2 2
o oR aε+ = + ; 

2 2
i iR aε+ = + ; 2 2( )o oR l aε− = + + ; and 2 2( )i iR l aε− = + + .   
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Fig. 3 Effect of ai/ao and l/(2ao) 

3336

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on February 5, 2010 at 14:49 from IEEE Xplore.  Restrictions apply. 



 

 

Equivalent Magnetization of the ePM 

For a cylindrical PM, M is zero outside the physical 
boundary where or a≥ . This, along with the observation in 
Figs. 3(a)-(c), suggests that the magnetization of the ePM 
takes the following form: 

( ) ,                     0
( ) where 

( ) ( ),   
o i

o i i o

M r M r a
M r

M r M J r a a r a
= ≤ <⎧

= ⎨ = − − ≤ ≤⎩
zM e (7)

where M0 is an integral constant to be found by comparing (2) 
and (3).  Since the cylindrical ePM has a maximum along its 
magnetization, we find M0 from  at (0,0, / 2 )PMz EMzB B l ε= + . 
Substituting (7) into (3) and noting that 0∇• =M , the first 
term on the right side of (3) disappears and we have (8): 
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(8)

M0 can now be determined by equating (6) and (8), which 
implies that the last term of (8) must be zero. As the factor 
involving the independent variable ε is not always zero, 

( ) ( )o iM r J a a= − . Hence, the equivalent magnetization M 
graphically illustrated in Fig. 3(d) is given by (9):  

( ) ( ),  0
( ) where 

( ) ( ),   
o i i

o i o

M r J a a r a
M r

M r J a r a r a
= − ≤ <⎧

= ⎨ = − ≤ ≤⎩
zM e  (9)

Once the ePM is found, the EM can be modeled using a 
distributed set of multipoles (DMP) [8]. For a cylindrical PM, 
the DMP consists of k circular loops of n equally spaced 
dipoles parallel to the magnetization vector as shown in Fig. 4. 
The loops (each with radius ja ) are uniformly spaced:  

/ ( 1)ja aj k= + at / 2z = ±  ( 0 j k≤ ≤ ) (10)
The flux density at point P(x, y, z) can be computed using 
(11): 

0
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(11)

where Rij+ and Rij- are the vectors from the source and sink of 
the ith dipole on the jth loop to P respectively.   

 
Fig. 4 DMP model of a cylindrical magnet [8] 

The force acting on the PM can be computed by summing 
the individual forces on the magnetic dipoles using (1). 

III. MODEL VALIDATION  
To validate the DMP derived for a circular EM, we 

investigate the effect of DMP models on a) the magnetic field 
distribution, and b) the magnetic force computation. Test 
setups and computed results for the above case studies are 
discussed in the following subsections. 

A. Validation of magnetic field computation 
We compare the DMPEM modeled magnetic field against 

the exact solution using (3) integrating over the original 
multilayer EM 3D geometry, and the ESL approximation.  
Along with the parameters that characterize the ESL and 
DMPEM, Table 1 lists the dimensions of four multilayer (ML) 
EMs which use 28AWG wire.   
TABLE 1: EM COIL* GEOMETRIES AND THEIR ESL AND DMP MODELS 

 EM1 EM2 EM3 EM4 
ao (mm) 9.53 9.53 12.7 15.88 
ai /ao 0.66 0.5 0.375 0.3 

ML 

l /(2ao) 1 1 0.5 0.3 
      

Jedw (A/mm) 31.78 48.0 82.12 120.14 ESL 
ae (mm) 9.08 8.76 10.28 12.0 

  
n, k, /l l  12, 6, 0.812 12,6, 0.8142 12, 4, 0.621 16, 6, 0.442 DMP
mi (μA/m) 0.062, 0.046, 

0.104, 0.148, 
0.238, 0.367, 
-0.014 

0.081,0.078,   
0.133,0.311,    
0.343,0.211,    
0.0195 

0.774, 0.498,
1.347, 1.018,
0.522 

1.476, 0.547,
1.618, 1.644,
1.654, 1.325,
0.592 

*28AWG Wire with 1A Current 

Since the magnetic flux density of the ESL model is 
singular at the surface (z=l/2), we plot in Fig. 5 Bz at z=l/2+ε 
where ε=0.55mm for the four EMs to show the effect of 
aspect ratios (ai /ao and l /2ao) on Bz.  Typical Br at z=l/2+ε 
and Bz along the z axis are given in Fig. 6, where EM2 is 
based.   

The DMPEM models agree very well with the exact integral 
of the multilayer EMs.  The ESL models closely predict the 
flux density along the z-axis and for thin coil (ai /ao ≈ 1), but 
the discrepancies from the exact solutions increase with 
smaller ai /ao (or thicker coils) as shown in Figs. 5 and 6.  
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B. Validation of magnetic force computation 
We compute the magnetic force between a PM and an EM 

for the test setup shown in Fig. 7 using three different 
methods, and compare the results against published 
experimental data [10]. In all three methods, the PMs are all 
modeled as DMP. 
Method I:  Maxwell Stress Tensor T with the multilayer EM. 

C

dC= ∫F T  (12)

where 2

0

1 1( )
2

B
μ

⎛ ⎞= • −⎜ ⎟
⎝ ⎠

T B B n n ; and 

C is an arbitrary boundary enclosing the body of interest; 
and n is the normal of the boundary interface. Equation (12) 
requires the total field B (contributed by both the PM and 
EM) to compute the force by the surface integration.  

Method II: Lorentz force equation with the ESL model 
replacing the multilayer EM. 

Id= − ×∫F B n   where I JdS= ∫∫  (13)
where n is the unit current direction vector; and S is the 
cross section of wire.  Since the current density vector J is 
directly used in the calculation, only the B-field of the PM 
is needed in the Lorenz force equation, which calculates the 
magnetic force exerted on current-carry EM.   

Method III: Dipole force equation with the DMP of EM 
With the EM and PM modeled as respective DMPs, the 
force acting on each of the dipoles under the influence of 
the current-carry EM can be calculated from (1) 
where 0/ μ=H B ; and B is given by (11).  The net force 
acting on the PM is simply the summation of the individual 
forces on the dipoles that characterize the PM: 

( )0

1 14

sr

i j j i j i j i j i

nn

r s s r s r s r s r
i j

m mμ
π + + + − − − − +

= =

= − + −∑ ∑F R R R R  (14)

In (14), ( ) 3/s r s r s r± ± ± ± ± ±= − −R R R R R ; and nr and ns are 
the  number of dipoles of the PM and EM respectively. 

Size Large Small
d1 (mm) 3.048 1.524
d2 (mm) 3.962 3.175
d3 (mm) 2.998 1.6
L (mm) 1.6 0.813
Coil res. (Ω) 57 32
Wire length (m) 3 1.68

d 1

d 3

d 2

 

Samarium-Cobalt magnet; μ0M0=1.02 T 
Coil: 280 turns of #47 wire; 
Current=0.05A 

Fig. 7 Experimental setup and parameters 

Table 2 summarizes the parameters used in this simulation, 
for the two setups shown in Fig. 7. Figure 8 compares the 
computed forces against published experimental data; and 
Table 3 compares the error for each case and the time 
required to compute 26 data points for the case in Fig. 8(a) 
using a computer with Quad Core 2.66GHz CPU and 8G 
RAM. And the error is defined as 

exp exp/Error F F F= −∑ ∑  
As shown in Fig. 8, the results computed using the dipole 
force equation closely agrees with the experimental data.  
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Fig. 8 Computed forces and experimental data 

For all cases, the Maxwell stress tensor and the dipole 
force equation (or Methods I and III respectively) very 
closely agree with published experimental data while the ESL 
model (that reduces the volume integral of the multi-layer EM 
to surface integral of a single-layer coil) overestimates the 
computed forces as expected.  Unlike the Lorentz force 
equation (with the ESL approximation) and the Maxwell 
stress tensor method requiring computationally tedious 
surface integrations, the closed-form dipole force equation 
(replacing integrations with summations) dramatically 
reduces the computation time.   
TABLE 2: SIMULATION PARAMETERS 

 Parameters Large Small 
n, k, /l l  6, 2, 0.314 6, 2, 0.3122 PM 

DMPPM mi (μA/m) 1.65, 0.02, 3.8 0.43, 0.02, 1.07 
Jedw (μA/mm) 22.75 38.98 EM 

(ESL) ae (mm) 1.8168 1.456 
n, k, /l l  12, 8, 0.7661 8, 3, 0.7441 EM 

(DMPEM) mi (nA/m) 0.236, 0.177, 0.366, 
0.567, 0.751, 0.914, 
1.032, 1.28, 0.312 

1.354, 1.758, 3.32, 
1.661 

TABLE 3: COMPARISON OF COMPUTATION TIME AND ERROR 
Method I II III

Fig. 8(a) 6.02 7.55 6.29
Fig. 8(b) 21.1 26.4 3.89
Fig. 8(c) 3.2 7.1 2.2

Error (%) 

Fig. 8(d) 10.3 16.4 12.4
Computation Time (sec) 106.03 21.53 0.0625
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IV. ILLUSTRATIVE APPLICATION 
As illustrated in the above example, the dipole force 

equation with EMs and PMs modeled as DMP is an efficient 
way to compute the magnetic force in 3D space for design 
and control of an electromagnetic system, especially for 
wrist-like spherical motors [8] where a large number of stator 
EM coils and PMs are involved. 

Figure 9 shows the CAD model of a spherical motor, where 
the PMs and EMs are equally spaced on layers of circular 
planes with their radial magnetization axes passing through 
the motor center, where the EMs are air-cored; and the entire 
structure (except for the PMs) is non-magnetic. The PMs and 
EMs are grouped in pairs such that they are 
electromechanically symmetric.  The spherical motor design 
has 3 layers of 8 stator EMs, and 2 layers of 12 rotor PMs. 
The magnetization axes of these PMs or EMs, can be 
characterized mathematically by a vector. The magnetization 
axes of the mr PM pole-pairs are given in rotor coordinates 
(x,y,z) by (15): 

T1( 1) cos cos cos sin sini
i ri ri r ri riθ φ θ φ θ−= − ⎡ ⎤⎣ ⎦r  (15)

Similarly, the ms EM pole-pairs in the stator frame (XYZ) are 
T

cos cos cos sin sinj sj sj sj sj sjθ φ θ φ θ⎡ ⎤= ⎣ ⎦s  (16)

In (15) and (16), ( ) ( ), and ,r s s rθ φ θ φ are given in Table 4. 

  
Fig. 9 CAD model of the spherical motor 

Because of the symmetry, the EM current inputs are 
designed such that  

I1=I13=u1, I2=I14=u2, I3=I15=u3, I4=I16=u4, I5=I9=u5, I6=I10=u6, 
I7=I11=u7, I8=I12=u8, I18=I19=-I22=-I23=u9, 

I17=-I20=-I21=I24=u10. 
The design has the operating range 

0 ( , ) 360  and -22.5 22.5ψ φ θ≤ ≤ ≤ ≤  
where ( , , )ψ θ φ are the ZYZ Euler angles of the rotor. 

 
TABLE 4: DESIGN PARAMETERS 

Rotor Stator 

i (deg)rθ  (deg)rφ  j (deg)sθ  (deg)sφ  
1-12 -15 30(i-1) 1-8 26 45(j-1) 
13-24 15 30(i-13) 9-16 -26 45(j-9) 

   17-24 0 45(j-17)+22.5 

A. Torque-Current Relationship of a Spherical Motor 
The torque model of the PM-based spherical motor with 

linear magnetic properties has the following form: 

[ ] [ ]T
X Y ZT T T= =T K u  (17)

where ( )3
1

s
s

m
p mK K K× ⎡ ⎤∈ = ⎣ ⎦K  (18)

and T

1 p ms
I I I⎡ ⎤= ⎣ ⎦u  (19)

In (17), Ip is the current input in the pth EM; ms is the total 
number of EMs; and 3 1

pK ×∈ . The torque characteristic 
vector Kp (contributed by the pth EM to the whole rotor) at 
each rotor orientation ( , , )ψ θ φ can be derived using dipole 
method.  Given that each of the EMs (or PMs) is 
characterized   by np (or nr) number of dipoles, we have 

( ) ( )0

1 14

p

i j j i j i i j i j i i

n nr

p r s s r s r r s r s r r
i j

K m mμ
π + + − + + + − − − −

= =

⎡ ⎤= − × − − ×⎣ ⎦∑ ∑ R R R R R R  

(20) 
Since the SWM has more current inputs than its 

mechanical degrees of freedom, the actual current input 
vector u for a given torque is found by minimizing the input 
energy consumption subject to the desired torque constraint.  
Provided that the input currents are kept within limits, the 
optimal u can be solved using Lagrange multipliers. The 
optimal solution [4] can be written in closed form: 

[ ] [ ][ ]( ) 1T T −
=u K K K T  (21)

B. Current needed for a Specified Torque 
The end-effecter is mounted on the spherical rotor, and is 

designed such that the center of gravity coincides with the 
rotation center as shown in Fig. 10. The external torque is 

ext loadT r m g= ×   (22)
Statically, the torque acting on the rotor is equal to the 
external torque at any orientation, and thus the current input 
in each EM at ( , , )ψ θ φ can be determined from (17).  Table 5 
summarizes the parameters used in this simulation. The 
maximum current of each EM in a full circle ( 0 360φ≤ ≤ ) 
was recorded and shown in Fig. 11.  Specifically, the input 
profiles were plotted in the range of 0 90ψ≤ ≤  and 

22.5 22.5θ− ≤ ≤ due to symmetry. 

loadm g

 
Fig. 10 Table model and loading torque 

TABLE 5: SIMULATION PARAMETERS 
Load mload 8kg 
Rotor hz 64.8mm 

 mass 2.03kg 
 Offset of mass center 0 
 Moment of Inertia (kg-m2) Izz=7.97e-3, Ixx=Iyy=5.89e-3
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Fig. 11 Current inputs in stator 

V. CONCLUSIONS 
We have presented a new method (that models the 

multilayer EM as an equivalent PM) for computing the 
magnetic forces and torques of a electromagnetic actuator 
system consisting of EMs and PMs.  The method has been 
validated by comparing results against exact field solutions 
and published experimental force data. Along with the 
prototype CAD design, we simulate the maximum current 
inputs required of the spherical motor (150mm×150×150mm) 
for a given design specifications. The simulation suggests 
that the maximum current per coil required is less than 3A for 
the specified load (and rotor weight) of 10kg. 
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